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Although metalation of hydrocarbons has been widely used as a
convenient method for the preparation of corresponding carbanions,1

the deprotonation of hydridosilanes (sila-metalation) forming the
corresponding silyl anions is rather exceptional.2-5 In the reaction
of a hydridosilane with an alkyllithium, nucleophilic attack of the
alkyl anion to silicon usually occurs to give the corresponding
alkylsilane (SN2-Si, path a in Scheme 1), where the hydrido group
serves as a rather good leaving group. An alternative sila-metalation
pathway (path b in Scheme 1) is disfavored because of the hydride
character of the Si-H hydrogen; the bond polarity is Si(δ+)-
H(δ-) in contrast to the polarity of C(δ-)-H(δ+) based on the
electronegativity differences. The relative reactivity between SN2-
Si (path a) and sila-metalation (path b) should be modified by the
substituents on silicon and the basicity of the attacking reagent.6

Trialkylsilyl-substituted hydridosilanes are good candidates as the
substrates for the selective sila-metalation because an electropositive
trialkylsilyl substituent will decrease the electrophilicity of the
silicon center and stabilize the silyl anion formed by the sila-
metalation. In this paper, we report the achievement of the
convenient sila-metalation of trialkylsilyl-substituted dihydridosi-
lanes to give the corresponding silyllithiums, the scope and
limitation of the reaction, and the structure of a hydridosilyllithium
determined by X-ray crystallography.

Typically, to a THF solution (10 mL) of bis(tert-butyldimeth-
ylsilyl)dihydridosilane (2a, 0.500 g, 1.92 mmol) was added a
pentane solution oftert-butyllithium (1.45 mol/L, 1.70 mL, 2.49
mmol) dropwise at-40 °C under argon. After the mixture was
stirred for 1 h at-40 °C, an excess amount of iodomethane (1.00
g, 7.05 mmol) was added to the mixture. The usual workup gave
the corresponding methylhydridosilane3a (0.526 g, 1.92 mmol,
100%).7 The general reaction scheme is shown in eq 1. The results
of the reactions of various dihydridosilanes with several bases are
shown in Table 1. Lithium diisopropylamide (LDA) worked
similarly as a base (entry 2). On the other hand, the reaction of1a
with n-BuLi gave the corresponding substitution product, (t-BuMe2-
Si)2Si(Bu-n)H, quantitatively (entry 3). Whereas the sila-metalation
of bis(trialkylsilyl)dihydridosilanes2b and2cwas achieved likewise
by using t-BuLi (entries 4 and 5), the highly sterically hindered
bissilyldihydridosilane2d reacted with neithert-BuLi nor LDA
(entries 6 and 7). Interestingly, the sila-metalation of silyl(aryl)-
silane2eoccurred satisfactorily using LDA, while the nucleophilic
substitution of2e was the major pathway whent-BuLi was used
(entries 8 and 9). As expected, no sila-metalation of dialkyldihy-
dridosilane2f or diaryldihydridosilane2g occurred (entries 10-
12).

Hydridosilylithium1awas isolated as air- and moisture-sensitive,
but thermally stable, colorless crystals.8 The 7Li resonance in1a
appeared at 2.0 ppm, suggesting that the lithium ion is not free but
exists as a contact ion-pair in toluene.9 The 1J(29Si-1H) coupling

constant of 75 Hz for1a is much smaller than that for tris(tert-
butyldimethylsilyl)silane (147 Hz),10 indicating that the s-character
of the silicon orbital of the Si-H bond in1a is much less than that
in 2a due to the electropositive lithium substituent in1a.

X-ray analysis showed that1a is dimeric in the solid state,11

where two lithium atoms bridge between anionic silicon atoms
forming a parallelogram, and each lithium atom is coordinated by
one THF molecule (Figure 1). The Si-H hydrogens are in the plane
of the parallelogram but are disordered.13,14 The Si-H- - -Li
distances in1a are 1.95(5)-1.96(5) Å, which are close to the
distances calculated for the inverted SiH3Li (1.911 Å)15 and those
observed in 1,2-dilithio-1,1,2,2-tetrakis(dimethylsilyl)-ethane (2.00-
2.33 Å);16 the agostic interactions are suggested to exist between
lithium and hydrogen atoms in1a.17-19

The reaction of (t-BuMe2Si)2GeH2 with t-BuLi in THF afforded
the corresponding germyllithium, (t-BuMe2Si)2GeHLi (5), in quan-
titative yield.20,21A single crystal of5 was found to have a dimeric
structure similar to that of1a.

Application of the functional silyl anions prepared by sila-
metalation to organic synthesis is in progress.
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Scheme 1

Table 1. Reactions of Various Dihydridosilanes with Bases

yields of products

entry dihydridosilane 2 base (R′Li) 3 4

1 (t-BuMe2Si)2SiH2 (2a) t-BuLi 100 (3a) 0
2 2a i-Pr2NLi 88 (3a) 0
3 2a n-BuLi 0 100 (4a)
4 (Me3Si)2SiH2 (2b) t-BuLi 100 (3b) 0
5 (i-Pr2MeSi)2SiH2 (2c) t-BuLi 97 (3c) 0
6 (i-Pr3Si)2SiH2 (2d) t-BuLi 0a 0
7 2d i-Pr2NLi 0a 0
8 (t-BuMe2Si)(Tol)SiH2

b (2e) t-BuLi 21 (3e) 67 (4e)
9 2e i-Pr2NLi 97 (3e) 0

10 Pr2SiH2 (2f) t-BuLi 0 100 (4f)
11 Ph2SiH2 (2g) t-BuLi 0 88 (4g)
12 2g i-Pr2NLi 0 80 (4g′)

a Hydridosilane2d was recovered.b Tol ) 4-methylphenyl.
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Figure 1. ORTEP view of hydridosilyllithium1a. Thermal ellipsoids are
drawn at the 30% probability level. Selected bond lengths (Å) and angles
(deg): Si1-Si2 2.3480(9), Si2-Si3 2.3453(8), Si2-Li1 2.644(4), Si2-
Li1* 2.667(4), Si2-H 1.44(5), Si2-H′ 1.47(5), H-Li1 1.95(5), H′-Li1*
1.96(5), Si1-Si2-Si3 108.03(3), Li1-Si2-Li1* 67.6(1), Si2-Li1-Si2*
112.3(2).
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